Core Mathematics 4 Paper G

1. Express

$$
\begin{equation*}
\frac{2 x^{3}+x^{2}}{x^{2}-4} \times \frac{x-2}{2 x^{2}-5 x-3} \tag{4}
\end{equation*}
$$

as a single fraction in its simplest form.
2. A curve has the equation

$$
\begin{equation*}
x^{3}+2 x y-y^{2}+24=0 \tag{7}
\end{equation*}
$$

Show that the normal to the curve at the point $(2,-4)$ has the equation $y=3 x-10$.
3. Using the substitution $u=\mathrm{e}^{x}-1$, show that

$$
\begin{equation*}
\int_{\ln 2}^{\ln 5} \frac{\mathrm{e}^{2 x}}{\sqrt{\mathrm{e}^{x}-1}} \mathrm{~d} x=\frac{20}{3} \tag{8}
\end{equation*}
$$

4. (i) Expand $(1+a x)^{-3},|a x|<1$, in ascending powers of x up to and including the term in x^{3}. Give each coefficient as simply as possible in terms of the constant a.

Given that the coefficient of x^{2} in the expansion of $\frac{6-x}{(1+a x)^{3}},|a x|<1$, is 3 ,
(ii) find the two possible values of a.

Given also that $a<0$,
(iii) show that the coefficient of x^{3} in the expansion of $\frac{6-x}{(1+a x)^{3}}$ is $\frac{14}{9}$.
5. $\quad \mathrm{f}(x)=\frac{7+3 x+2 x^{2}}{(1-2 x)(1+x)^{2}},|x|>\frac{1}{2}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Show that

$$
\int_{1}^{2} \mathrm{f}(x) \mathrm{d} x=p-\ln q
$$

where p is rational and q is an integer.
6. Relative to a fixed origin, the points A, B and C have position vectors ($2 \mathbf{i}-\mathbf{j}+6 \mathbf{k}$), ($5 \mathbf{i}-4 \mathbf{j}$) and ($7 \mathbf{i}-6 \mathbf{j}-4 \mathbf{k}$) respectively.
(i) Show that A, B and C all lie on a single straight line.
(ii) Write down the ratio $A B: B C$

The point D has position vector ($3 \mathbf{i}+\mathbf{j}+4 \mathbf{k}$).
(iii) Show that $A D$ is perpendicular to $B D$.
(iv) Find the exact area of triangle $A B D$.
7. A mathematician is selling goods at a car boot sale. She believes that the rate at which she makes sales depends on the length of time since the start of the sale, t hours, and the total value of sales she has made up to that time, $£ x$.

She uses the model

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{k(5-t)}{x}
$$

where k is a constant.
Given that after two hours she has made sales of $£ 96$ in total,
(i) solve the differential equation and show that she made $£ 72$ in the first hour of the sale.

The mathematician believes that is it not worth staying at the sale once she is making sales at a rate of less than $£ 10$ per hour.
(ii) Verify that at 3 hours and 5 minutes after the start of the sale, she should have already left.
8.

The diagram shows the curve $y=\mathrm{f}(x)$ in the interval $0 \leq x \leq 2 \pi$ where

$$
\mathrm{f}(x)=\frac{\cos x}{2-\sin x}, \quad x \in \mathbb{R} .
$$

(i) Show that $\mathrm{f}^{\prime}(x)=\frac{1-2 \sin x}{(2-\sin x)^{2}}$.
(ii) Find an equation for the tangent to the curve $y=\mathrm{f}(x)$ at the point where $x=\pi$.
(iii) Find the minimum and maximum values of $\mathrm{f}(x)$ in the interval $0 \leq x \leq 2 \pi$.
(iv) Explain why your answers to part (c) are the minimum and maximum values of $\mathrm{f}(x)$ for all real values of x.

